Skip to main content
woman taking pills

This is an excerpt from an article recently published in the Journal of AHIMA, "Understanding and Building a Skill Set for Machine Learning with Drug Dosing." In the article, AHIMA22 presenter Shannon H. Houser, PhD, MPH, RHIA, FAHIMA, and co-author R. Jeffrey Harris, RPH, MSHI take a closer look at the role of machine learning as this technology evolves.

Excerpt: Understanding and Building a Skill Set for Machine Learning with Drug Dosing

By Shannon H. Houser, PhD, MPH, RHIA, FAHIMA, and R. Jeffrey Harris, RPH, MSHI

 

Machine learning (ML) is a subset of artificial intelligence (AI) that uses reinforcement learning with human-like levels of intelligence to predict outcomes and improve task performance. ML is widely applied in healthcare, including pharmacy practices. It can be used to calculate dosages in special populations that are difficult for traditional human computing.

There are, however, challenges in data management and analytics, and special skill sets are needed when working with ML in drug dosing applications.

Skills Needed for Machine Learning

Some basic technical skills are needed when working with ML. Those skills include applied mathematics, computer science fundamentals and programming, data modeling and evaluation, algorithms used in ML, and natural language processing. Soft skills are also necessary characteristics for delivering your technical skills more effectively.

Mathematics, such as linear algebra, probability, statistics, and multivariate calculus, are fundamental skills in ML. When selecting the appropriate ML algorithm, mathematical formulas, parameters, approximate confidence levels, and statistical modeling procedures are all basic concepts to apply. Fundamental computer science, such as data structures, algorithms, space and time complexity, and different programming languages like R and Python for ML and SQL for database management, is another important skill for ML.

Data in general are fundamental constructs for ML. When building data modeling, it involves data structures, and the patterns of the data. For example, the drug dosing discussed above require understanding of regression, classification, clustering, dimension reduction, and clinical terminology and concepts. A basic understanding of algorithms, such as decision tree, linear regression, and neural networks is also needed for ML.

Soft skills in ML such as communication, problem-solving, and critical thinking are equally important when working with ML to convey your technical skills to non-technical people, solve ongoing problems, and make better decisions.

Click here to read the full article.

 

Learn More at AHIMA22

Hear more from Shannon H. Houser at AHIMA22 Global Conference, taking place October 9-12 in Columbus, OH. House will be co-presenting the session "Solutions for Challenges in Telehealth Privacy and Security" on Tuesday, October 11.

 

Learn More about AHIMA22

Connect, Learn, and Grow at AHIMA22

Connect with fellow passionate health information professionals at the global conference that brings together the industry's leading voices for an unforgettable experience. From the latest on healthcare hot topics to inspiring keynotes, we have so much in store for you!

Browse the AHIMA22 Agenda

Our full schedule is now available to browse on the AHIMA22 Global Conference website. Get a preview of the sessions, networking opportunities, reception events, and more. Check back frequently for important updates and exciting additions.

Register and Book Your Hotel Today

AHIMA has secured discounted room rates at hotels near the Greater Columbus Convention Center and encourages participants to book within the AHIMA room block during the registration process for the best selection and rates.

Back to top